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however . . .   turbulence, MHD events −−> losses

strong magnetic field, small gyroradius

closed magnetic flux surfaces

−−> confined plasma, steep "pedestal" at edge
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tokamak edge pedestal distinctly

• scales – parameters
— steep gradient, R/L⊥ > 30, even find L⊥/R < ρs/L⊥

— electron transit frequencies comparable to turbulence, cs/L⊥ > Ve/qR

• dynamics
— low frequency/beta → magnetic stiffness → reduced, gyrokinetic equations
— electromagnetic turbulence character cs/L⊥ > vA/qR

• equilibration
— neoclassical time scale separation is affected
— collisional relaxation in the regime of L⊥/R < ρs/L⊥ ∼ {20, 30}−1

the scale ratio regime determines
edge/pedestal dynamical character



space scales

• meaning of steep gradients:

profile scale L⊥ ≪ toroidal major radius R

• field line pitch parameter in a conventional tokamak

q ∼ 3

• parallel scale (field line connection length) is the largest

qR/L⊥ ∼ 200

• the local rho-star is not smaller than the perp scale ratio

ρs/L⊥ ∼ 1/30 L⊥/R ∼ 1/50



time scales

• transit frequencies for electrons, magnetic field
◦ thermal or Alfvén velocity and parallel scale

• turbulence spectrum range, acoustic frequencies go with sound speed

• parallel scales have consequences for time scale separation

cs
L⊥

>
vA
qR

∼
Ve
qR

≫
cs
R

>
cs
qR

• the space scale ratio affects relaxation

several 102
L⊥

cs
∼ ν−1

i and in some cases several ν−1
i ∼

L2
⊥

χi



what determines the edge?

• mainly, the electron thermal nonadiabaticity condition: cs/L⊥ > Ve/qR, or µ̂ > 1

def: µ̂ =
me

MD

(
qR

L⊥

)2

• consider the boundary, µ̂ = 1, then cs/L⊥ = Ve/qR → edge/core bndy

• solve this for the profile scale length

L⊥ =
√
me/MD qR

• for linear profile gradients this is typically about 8 cm
◦ and it holds over about the last 4 cm within the LCFS

on the other hand,
if a pedestal exists, the top is the edge/core boundary
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Low Pressure (Beta) Dynamics

vortices/filaments

magnetic field

−−> strict perpendicular force balance

‘‘flute mode’’

low frequencieslow ‘‘beta’’

−−> electromagnetic parallel dynamics

pressure disturbance

magnetic disturbance

B

(parallel to B)

p

B

ω ∼ k  v|| A

p << B /8π k  vAω <<2
⊥

k  << k|| ⊥

π



low frequency drift regime

• fluid → reduced equations

E → −
1

c

∂A‖

∂t
b−∇φ ∇ · u⊥ ∼

u⊥

R
≪ u · ∇

vE =
c

B2
B×∇φ

B2 =
B2

0R
2
0

R2

[
1 +O

(
a

qR
, β

)]
→

I2

R2

• kinetic → gyrokinetic

A → Aeq +A‖b b → R∇ϕ ψT → ψeq +A‖R

def: ΩE =
c

B
∇2

⊥φ ≪
eB

mc
µ =

mv2⊥
2B

→ conserved, i.e.,
dµ

dt
= 0

then: f = f(R, z, µ, t) but dynamics (exc. coll.) is in space of {R, z}



example – magnetic compressibility

• write MHD equations for u and B

ρM
du

dt
=

1

c
J×B−∇p

∂B

∂t
= ∇×(u×B)

• in tokamak geometry, B = Fdia∇ϕ+∇ψT×∇ϕ, and in general: µ0J = ∇×B

• form equations for ∇ · u and Fdia

∇ · µ0ρMR
2 du

dt
= −∇2F

2
dia

2
−∇ ·

(
∆∗ψT∇ψT + µ0R

2∇p
)

∂

∂t

Fdia

R2
= −Fdia∇ ·

u

R2
−

u

R2
· ∇Fdia +B · ∇ (u · ∇ϕ)

• for k⊥vA ≫ ∂/∂t and reasonable velocities these reduce to

Fdia → I = constant ∇ ·
u

R2
→ 0 → drifts



drifts in reduced model

• solve for u in Lorentz force instead of inertia since ZeB/mc≫ ∂/∂t

nm
du

dt
+∇ ·Π∗ = nZe

(
E+

u

c
×B

)
−∇p

• find drifts

u⊥ =
c

B2
B×

(
∇φ+

1

nZe
∇p

)
+

mc

ZeB2
B×

(
du

dt
+

1

nm
∇ ·Π∗

)

• last term is polarisation velocity, and total inertia → polarisation current

all inertia is polarisation (incl. diamag. momentum flux)



vorticity in reduced model

• vorticity instead of fluid inertia (all inertia becomes polarisation)

∂̟

∂t
+ [φ,̟] = B∇‖

J‖
B

−K(p) ↔ ∇ · J = 0

• geometry and ordering under L⊥ ≪ R and nmu2E ≪ p and ρs ≪ L⊥

[f, g] =
cR0

B0
∇ϕ · (∇f×∇g) B∇‖f = B · ∇f = B0 · ∇f −∇ϕ ·

(
∇A‖R×∇f

)

K(f) = [(R/R0)
2, f ] ∇ · fvE → [φ, f ]− f0K(φ)

• vorticity in the reduced MHD limit

̟ = ∇ ·
ρMc

2

B2
∇⊥φ →

ρM0c
2

B2
0

∇2
⊥φ → normalisation → ρ2s∇

2
⊥φ



normalisation and scales

• low-freq, pressure driven → sound speed normalisation, not an Alfvénic one

n↔ n0 φ↔
Te
e

u‖ ↔ cs J‖ ↔ n0ecs A‖ ↔ B0ρs

• for vorticity, divide apparent charge density by n0e, use above, to find

̟ ↔
ρM0c

2

B2
0

Te
n0e2

∇2
⊥φ→ ρ2s∇

2
⊥φ ρ2s =

c2MiTe
e2B2

0

→ ρs =
cs
Ωi

• the scale ρs is demanded by eventual nee∇‖φ ∼ ∇‖pe → Te/e for φ
◦ this is the main neglect done by the MHD model

• time scale is nominal space scale divided by cs, so using L⊥ you have

t↔
L⊥

cs
δ =

ρs
L⊥

and K, [f, g] → O(δ) while ρ2s∇
2
⊥ → O(δ2)



MHD dynamics in reduced model

• in one-fluid MHD (familiar) you neglect diamagnetic effects
◦ all appearances of ∇p next to ∇φ
◦ implicitly assumes smallness of pressure fluctuations/dynamics

• solve for vorticity, electron density, and electron and ion parallel dynamics
◦ any model used for learning purposes is isothermal

∂̟

∂t
+ [φ,̟] = B∇‖

J‖
B

−K(n)

∂n

∂t
+ [φ, n] +B∇‖

u‖
B

= K(φ)

∂A‖

∂t
= −∇‖φ− η‖J‖

∂u‖
∂t

+ [φ, u‖] = −∇‖n+ µ‖∇
2
‖u‖

• with ̟ = ρ2s∇
2
⊥φ and J‖ = −(ρ2s/βe)∇

2
⊥A‖ as self-consistent field equations



Reynolds stress and acoustic oscillations

• Reynolds stress is the same as polarisation nonlinearity

∂̟

∂t
+ vE · ∇̟ = · · · zonal component →

∂

∂t
〈̟〉 =

ρs
L⊥

ρ2s
∂2

∂x2

〈
∂φ

∂x

∂φ

∂y

〉
+ · · ·

• zonal flow energy (grows if stress is aligned to zonal vorticity)

−〈φ〉
∂

∂t
〈̟〉 = ∇ · (· · ·) +

ρs
L⊥

〈̟〉

〈
−
∂φ

∂x

∂φ

∂y

〉
+ · · ·

• toroidicity gives rise to geodesic acoustic oscillation
◦ take zonal component, find mode frequency
◦ factors of ρs∂/∂x cancel, and the 1/2 is the average of sin2 θ
◦ thermal dynamics add coefficients, ion parallel dynamics adds corrections

∂̟

∂t
+ · · · = −K(n)

∂n

∂t
+ · · · = K(φ) →

∂2

∂t2
= −

1

2

(
2cs
R

)2



new things at the fluid level

• in edge turbulence or any pedestal dynamics, never neglect ∇p against ∇φ
◦ this makes everything two-fluid, at least

• adiabatic coupling

dynamics p̃e ↔ J‖ ↔ φ̃

sidebands 〈pe sin θ〉 ↔
〈
J‖ cos θ

〉
↔ 〈φ sin θ〉

• diamagnetic compression

sidebands 〈p sin θ〉 ↔ 〈p〉

• MHD and acoustic systems coupled by both processes

• flow dynamics in simple models drastically altered



dynamics in reduced two-fluid model

• now you never neglect diamagnetic effects
◦ pressure dynamics is never “small” compared to flows, currents

• solve for vorticity, electron density, and electron and ion parallel dynamics
◦ any model used for learning purposes is isothermal
◦ write density as isothermal pe to remember the physics, write normed masses µi,e

∂̟

∂t
+ [φ,̟] = B∇‖

J‖
B

−K(pe)

∂pe
∂t

+ [φ, pe] +B∇‖

u‖ − J‖
B

= K(φ− pe)

∂

∂t

(
A‖ + µeJ‖

)
+ [φ, µeJ‖] = ∇‖(pe − φ)− 0.51µeνeJ‖

µi

∂u‖

∂t
+ [φ, µiu‖] = −∇‖pe + µ‖∇

2
‖u‖

• with ̟ = ρ2s∇
2
⊥φ and J‖ = −(ρ2s/βe)∇

2
⊥A‖ as self-consistent field equations



turbulence energetics

• adiabatic response allows ExB and thermal coupling through J‖
◦ as well as the curvature coupling that exists in one-fluid model

• free energy construction – identify transfer effects as pieces of total divergences
◦ multiply by −φ and J‖ and pe respectively

1

2

∂

∂t
|ρs∇⊥φ|

2 +∇ · () = −φB∇‖

J‖

B
+ φK(pe)

1

2

∂

∂t

(
β−1
e

∣∣ρs∇⊥A‖

∣∣2 + µeJ
2
‖

)
+∇ · () =

J‖
B
B∇‖(pe − φ)− 0.51µeνeJ

2
‖

1

2

∂

∂t
p2e = peB∇‖

J‖
B

+ peK(φ− pe)

• processes in two-fluid models only
◦ electron adiabatic compression J‖∇‖pe
◦ diamagnetic compression peK(pe)

• processes in all models: ExB compression, peK(φ), and sound waves
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(B Scott Phys Fluids B 1992, Plasma Phys Contr Fusion 1997)
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Energy Transfer:  electromagnetic turbulence



Nonlinear Free Energy Cascade

direct cascade in delta−f entropy

inverse cascade in ExB energy

−−> nonlinear drive at small scales
energy taken out of larger scales

−−> nonlinear drive of long−wave
MHD component

spectrum tied together

scalings are affected



turbulence signatures

• basic turbulence with finite-beta drift wave mode structure

• spectra: mesoscale MHD activity, vorticity (‘w’) extends to ion gyroradius

• envelopes: ion temperature (magenta) largest fluctuation, most strongly ballooned
◦ potential (blue) is flat: shear-Alfvén signature, one of the dissipation channels

• fluxes: moderate, not extreme, ballooning (2 to 1 is common)



complex numbers:   n = (A exp −i    )

Phase Shifts and their Measurement
one dependent variable quantity leads another in the drift direction

α

φ

amplitude/phase are real numbers

how to calculate     :α

in k−space

(B Scott Plasma Phys Contr Fusion 1997)

significance: a positive phase−shift implies a positive down−gradient flux

α = Im log n*

ky

n

α φ

φ



Nonlinear Transition

linear mode structure wiped out by turbulence after saturation

linear regime phase shift part of the eigenmode for each ky
linear mode structure destroyed by the turbulence during saturation

mode structure at late times is the turbulence one: DW mode structure
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dispersion space bounded by ideal interchange and diamagnetic rates

0

k ρy   s

10
−2 0

this situation is a direct consequence of very large R/L   >> 1 in the edge
(B Scott New J Phys 2002, Phys Plasmas 2005)

usually, this is not the case anywhere in the spectrum (unless: MHD threshold)

if the linear growth rate is below the red line then the instability is irrelevant

T

Relevance Range for Linear Instabilities
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phase shifts – RMHD versus full gyrofluid

• gyrofluid turbulence is driven by both ∇Te and ∇Ti
◦ despite the ballooned structure of Ti
◦ the ne ↔ φ phase shifts remain drift-wave like, α >

∼ 0

• this is completely different from RMHD, which has α ∼ π/2



parallel structure – RMHD vs full gyrofluid

• gyrofluid turbulence is driven by both ∇Te and ∇Ti
◦ despite the ballooned structure of Ti
◦ the nonadiabatic part of pe is almost flat

• this is completely different from RMHD,
◦ which violates its assumption that nee∇φ≫ ∇pe (this always happens)



summary – edge turbulence basics

• ions say ITG, electrons say DW, φ̃ says trans-MHD → all are present/active

• gyrofluid edge-ITG signatures:
◦ Ti is largest and most ballooned (Ti⊥ a little more than Ti‖)
◦ H = ne − φ is the flattest
◦ Alfvén signature: φ flatter than Te which is flatter than ne
◦ nevertheless, the electron and ion ExB fluxes are comparable

• these features are why in your model for edge turbulence . . .

you need to keep pe ↔ J‖ ↔ φ adiabatic response

you need Ti distinct from p

you need to resolve ρi in any computations



flow energetics in a tokamak

• main element in a tokamak: geodesic curvature
◦ poloidal gradient in magnetic field in perpendicular drift dynamics
◦ absent in a 2D/interchange model

• main two-fluid element for flows:
◦ coupling between acoustic and Alfvén branches

• fate of zonal flow energy: transfer to dissipation channels via conservative processes
◦ turbulence → incoherent mixing
◦ adiabatic sideband compression → parallel electron dissipation

• how to do the analysis: sideband decomposition
◦ zonal and sin θ components of state variables (̟, pe)
◦ sin cos component of flux variables (J‖, u‖)
◦ keep NL only as source/sink effects via turbulence fluxes, flow stress (Γ, RE)
◦ don’t order ∂/∂t



θφ <p sin    ><    >

−−> transfer pathway, equipartition

zonal flow exchanges conservatively with pressure sideband

divergence at bottom

(Winsor et al Phys Fl 1968, Hahm et al Plasma Phys Contr Fusion 2002, 2004)

Zonal Flow, Toroidal Compression

compression at top pressure sidebandzonal flow



detailed example – continuity equation

• electrons: start with

∂pe
∂t

+ [φ, pe] + B∇‖

u‖ − J‖
B

= K (φ− pe)

• zonal component: flux surface average, fsavg , annihilates linear B∇‖

• the bracket terms represent turbulent flux (transport)

〈[φ, pe]〉+

〈
B∇‖

u‖ − J‖
B

〉
=

∂

∂x
〈Γ〉

• geodesic curvature has sin θ component, only one to survive fsavg

∂

∂t
〈pe〉+

∂

∂x
〈Γ〉 = ωB

∂

∂x
〈(φ− pe) sin θ〉 ωB =

2ρs
R

• the sideband is the disturbance maintained by gradients and finite collisionality



detailed example – continuity sideband

• electrons: sideband component: multiply by sin θ and then take fsavg

• integrate ∂/∂θ in ∇‖ by parts under fsavg

〈
sin θ∇‖u‖

〉
= −

〈
u‖∇‖ sin θ

〉
= −k‖

〈
u‖ cos θ

〉
k‖ =

L⊥

qR

• in the curvature term approximate fsavg of sin2 θ by 1/2

〈sin θK(φ)〉 = ωB

〈
sin2 θ

∂φ

∂x

〉
=
ωB

2

∂

∂x
〈φ〉

• resulting pressure sideband equation (treat fluxes as in zonal part)

∂

∂t
〈pe sin θ〉+

∂

∂x
〈Γ sin θ〉 − k‖

〈(
u‖ − J‖

)
cos θ

〉
=
ωB

2

∂

∂x
〈φ− pe〉



detailed example – parallel forces

• electrons: start with

∂

∂t

(
A‖ + µeJ‖

)
+ [φ, µeJ‖] = ∇‖ (pe − φ)− 0.51µeνeJ‖

• flux variable sideband component: multiply by cos θ and then take fsavg

◦ integrate ∂/∂θ in ∇‖ by parts under fsavg (watch signs)
◦ the nonlinear terms in this equation are small (MHD stable regime)

∂

∂t

〈(
A‖ + µeJ‖

)
cos θ

〉
= k‖ 〈(pe − φ) sin θ〉 − 0.51µeνe

〈
J‖ cos θ

〉



detailed example – parallel forces

• ions: start with

µi

∂

∂t
u‖ + [φ, µiu‖] = −∇‖pe + µ‖∇

2
‖u‖

• flux variable sideband component: multiply by cos θ and then take fsavg

◦ integrate ∂/∂θ in ∇‖ by parts under fsavg (watch signs)
◦ the nonlinear terms in this equation are small (subsonic regime)

∂

∂t

〈
µiu‖ cos θ

〉
= −k‖ 〈pe sin θ〉 − µ‖k

2
‖

〈
u‖ cos θ

〉



detailed example – charge conservation

• charge: start with the vorticity equation

∂̟

∂t
+ [φ,̟] = B∇‖

J‖

B
−K(pe)

• zonal component: treat as in the zonal continuity equation
◦ the bracket term represents Reynolds/Maxwell stresses (ExB forcing)

〈[φ,̟]〉 −

〈
B∇‖

J‖

B

〉
=

∂2

∂x2
〈RE〉

• geodesic curvature has sin θ component, only one to survive fsavg

∂

∂t
〈̟〉 = −

∂2

∂x2
〈RE〉 − ωB

∂

∂x
〈pe sin θ〉

• the sideband is the disturbance maintained by gradients and finite collisionality



Sideband Dynamics for Flows/Currents

• zonal vorticity, pressure sideband, sound wave sideband

∂

∂t
〈̟〉 = −

∂2

∂x2
〈RE〉 − ωB

∂

∂x
〈pe sin θ〉

∂

∂t
〈pe sin θ〉+

∂

∂x
〈Γ sin θ〉 =

ωB

2

∂

∂x
〈φ〉 −

ωB

2

∂

∂x
〈pe〉+ k‖

〈
u‖ cos θ

〉
− k‖

〈
J‖ cos θ

〉

∂

∂t
µi

〈
u‖ cos θ

〉
= −k‖ 〈pe sin θ〉 − µ‖k

2
‖

〈
u‖ cos θ

〉

• Alfvén sideband, flow sideband, zonal pressure

∂

∂t

〈(
A‖ + µeJ‖

)
cos θ

〉
= k‖ 〈pe sin θ〉 − k‖ 〈φ sin θ〉 − 0.51µeνe

〈
J‖ cos θ

〉

∂

∂t
〈̟ sin θ〉 = −

∂2

∂x2
〈RE sin θ〉 − k‖

〈
J‖ cos θ

〉
−
ωB

2

∂

∂x
〈pe〉

∂

∂t
〈pe〉+

∂

∂x
〈Γ〉 = ωB

∂

∂x
〈φ sin θ〉 − ωB

∂

∂x
〈pe sin θ〉



zonal flow energetics

• the equations don’t all fit on the page, but this is what you do . . .
◦ here, one equation per page

• for the zonal vorticity multiply by fsavg of −φ and integrate over dV

∫
dV × 〈−φ〉

∂

∂t
〈̟〉 = 〈φ〉

∂2

∂x2
〈RE〉+ 〈φ〉

∂

∂x
ωB 〈pe sin θ〉

∫
dV ×

1

2

∂

∂t
〈ρs∇⊥φ〉

2
= 〈̟〉 〈RE〉 − ωB 〈pe sin θ〉

∂

∂x
〈φ〉

• flow energy driven by Reynolds/Maxwell stress (corr. with zonal vorticity)

• flow energy is depleted by geodesic compression

turbulence driven zonal flows saturate at low levels



pressure sideband energetics

• for the pressure sideband multiply by 2 〈pe sin θ〉 and integrate over dV

∫
dV × 2 〈pe sin θ〉

∂

∂t
〈pe sin θ〉 = · · ·

+ ωB 〈pe sin θ〉
∂

∂x
〈φ〉 − 2 〈pe sin θ〉

∂

∂x
〈Γ sin θ〉 − 2k‖ 〈pe sin θ〉

〈
J‖ cos θ

〉

∫
dV ×

∂

∂t
〈pe sin θ〉

2
= · · ·

+ ωB 〈pe sin θ〉
∂

∂x
〈φ〉 − 2 〈Γ sin θ〉

〈
−
∂pe
∂x

sin θ

〉
− 2k‖ 〈pe sin θ〉

〈
J‖ cos θ

〉

• drive by geodesic compression (conservative transfer from zonal flow energy)

• sink by turbulent mixing and adiabatic compression . . .

turbulent mixing is one of the main sinks for zonal flow energy



Ohmic sideband energetics

• for the current sideband multiply by 2
〈
J‖ cos θ

〉
and integrate over dV

2
〈
J‖ cos θ

〉 ∂
∂t

〈
A‖ cos θ

〉
= . . .+ 2k‖

〈
J‖ cos θ

〉
〈pe sin θ〉 − 2η‖

〈
J‖ cos θ

〉2

∂

∂t
β−1
e

〈
ρs(∇⊥A‖) cos θ

〉2
= . . .+ 2k‖ 〈pe sin θ〉

〈
J‖ cos θ

〉
− 2η‖

〈
J‖ cos θ

〉2

• magnetic and parallel electron kinetic energy (the µeJ‖ term, not shown)

• drive by adiabatic compression (conservative transfer from pressure sideband energy)
◦ the other process, Alfvénic compression, leads to the Pfirsch-Schlüter current (equil.)

• sink by dissipation (here, resistivity)

the sink by dissipation is the other main sink for zonal flow energy



transport

φ∼

<φ>

<u cos s>
ion dissipation

transport

<p sin s>

resistivity

<    sin s>

P−S current

<J cos s>

adiabatic compression

diamagnetic compression

φ

<p>

(B Scott Phys Lett A 2003, New J Phys 2005)

effects
2−fluid

Reynolds
stress

MHD
effects

Energy Transfer:  flows and currents



10 1ky10-2

(B Scott Phys Lett A 2003, New J Phys 2005)

turbulence regulated by flows, regulated by toroidal compression

eddy Reynolds stress --> energy transfer from turbulence to flows

turbulence moderately weakened but not suppressed 

toroidal compression --> energy loss channel to pressure, turbulence

entire system in self regulated statistical equilibrium (turb, flows, mag eq)

Coupling to Zonal Flows



Turbulence vs Geodesic Curvature

• no geodesic curvature =⇒ no sideband dynamics
◦ details: New J Phys 7 (2005) 92

• self-generated flows are held down by geodesic compression . . .
◦ =⇒ coupling back to turbulence, coupling to dissipative currents

• flows have weak effect on saturated energy, no role for predator-prey mechanism



Reynolds
stress

φ∼

<φ>

transport

<p>

(B Scott Phys Lett A 2003, New J Phys 2005)

MHD
effects

of the zonal flow

generic
dissipation

no compression

Energy Transfer:  flows and currentsin 2D



what is gyrokinetic

• low frequency approximations, usually also low-β and small a/qR

• polarisation density, not polarisation current

• gyrocenter charge density ↔ vorticity, polarisation current

• ambipolarity of particle charge density holds

• ambipolarity of gyrocenter charge density holds only in steady state ∂/∂t = 0

• gauge transformation (coordinate changes, addition of pure divergences)
◦ addition of a pure divergence =⇒ integrations by parts

• equivalent to gyroaveraging over a ring orbit only at linear order

• Lagrangian/Hamiltonian support → automatic energetic consistency
◦ works in practice only if field equations are obtained from the same Lagrangian



what is gyrofluid

• it is a representation not a closure and not an ordering

• example: Hasegawa-Wakatani (fold the gradient term n0 into n)

∂n

∂t
+ [φ, n] = B∇‖

J‖
B

∂

∂t
∇2

⊥φ+ [φ, ∇2
⊥φ] = B∇‖

J‖
B

subtract and define N

∂N

∂t
+ [φ, N ] = 0 N = n−∇2

⊥φ

• this is nothing more and nothing less than the simplest gyrofluid model
◦ equations for n and N with “polarisation” −∇2

⊥φ = N − n

no polarisation drift for gyrocenters, but a polarisation density



how to treat FLR

• lots of detail, but the simplest long-wavelength version is

φG =

(
1 +

ρ2i
2
∇2

⊥

)
φ nG =

(
1 +

ρ2i
2
∇2

⊥

)
N

then
∂N

∂t
+ [φG, N ] + · · · and − ρ2s∇

2
⊥φ = nG − n

• lots of algebra including bracket forms such as

∇2
⊥[f, g] = ∇ · [f,∇⊥g] +∇ · [∇⊥f, g] ∇ · [f,∇⊥g] = [∇⊥f,∇⊥g] + [f,∇2

⊥g]

• use the fact that τiρ
2
s = ρ2i , grind away,

◦ and recover the fluid polarisation drift divergence, label pi = τin

∂n

∂t
+ [φ, n]−∇ ·

(
∂

∂t
+ [φ, ]

)
∇⊥(φ+ pi) + · · ·



fluid vs gyrofluid – same model

• using these methods, can show that gyrofluid FLR covers fluid nonlinear polarisation

• dissipation . . .

• large-νi limit of pi‖ − pi⊥ represents parallel viscosity
◦ including heat flux crossover (arises from v-dependence of C-operator)

• large-ν limit of q‖‖, q⊥‖ → q‖ covers thermal conduction, parallel thermal force

• result: thermal gyrofluid model covers reduced Braginskii in all aspects

• reference: Phys Plasmas 14 (2007) 112318

gyrofluid model is . . . easier to maintain computationally
has an obvious descent from underlying gyrokinetic theory

covers pedestal dynamics in transcollisional regime



gyrokinetics and neoclassics

• basic assumptions of neoclassical theory applied to the gyrokinetic equation system
◦ gyrokinetic theory requires only ρL ≪ L⊥ (forced by ΩE ≪ Ωi)
◦ conventional neoclassical theory requires ρL(qR/a) ≪ L⊥

• split f into background FM and disturbance δf arising from thermal gradients

• usually neglect FLR corrections, since ρL ≪ L⊥

◦ note orbit width comes from drifts, not FLR per se

• resulting equation set is identical to that used in neoclassical theory

• then, the fully nonlinear set you started with can be used in computations
◦ (that is, if you coded them as they stand)



basic assumption of neoclassical theory

• time scales: slow compared to relaxation dynamics, fast compared to transport

vA
qR

>
cs
R

> νi >
∂

∂t
>

χNC

L2
⊥

• space scales:
◦ this also follows from drifts ≪ parallel/collisional relaxation

ρB ∼ ρs
qR

a
< L⊥

marginal but not strongly violated even in pedestal
for conventional tokamaks



neoclassical models

• drift-kinetic equation with small drift piece acting on Maxwellian FM (ǫ, µ, ψc)
◦ note ∂/∂t on sideband piece is neglected by the ordering

v‖∇‖

(
δf +

Ze

T
φFM

)
− C(δf) = −vd ·

(
∇FM + FM Ze

T
∇φ

)

• flow damping rate νNC : maximal ordering v‖/qR ∼ νi suborderings:
◦ banana regime: v‖/qR > νi → νB ∝ νi
◦ collisional regime: v‖/qR < νi → νPS ∝ ν−1

i

◦ plateau regime, often modeled with simple crossover function (WM Stacey, 1990s)
νNC = νBνPS/(νB + νPS)

• standard treatments work through moment equations
◦ conserved quantities ↔ FM

◦ fluxes, relaxation ↔ δf

• lots of detail, endless argument . . . for basics refer to
FL Hinton and RD Hazeltine, Rev Mod Phys 48 (1976) 239



fluid analog

• write delta-f reduced fluid equations

• do sideband analysis

• keep consequences of neoclassical ordering
◦ zonal averages of conserved quantities
◦ divergence balance of flux variables (u‖, J‖, etc., no A‖)
◦ force balance of state variables (pe, ̟ → φ, etc.)



detailed example – divergence balances

• electrons: start with

∂pe
∂t

+ [φ, pe] + B∇‖

u‖ − J‖
B

= K (φ− pe)

• state variable sideband component: multiply by sin θ and then take fsavg

◦ note ∂/∂t on sideband piece is neglected by the ordering
◦ integrate ∂/∂θ in ∇‖ by parts under fsavg

◦ in the curvature term approximate fsavg of sin2 θ by 1/2
◦ for these purposes neglect nonlinear terms

k‖
〈(
u‖ − J‖

)
cos θ

〉
= −

ωB

2

∂

∂x
〈φ− pe〉

• considering ions also and separating J‖ these are the divergence balances

k‖
〈
J‖ cos θ

〉
= −

ωB

2

∂

∂x
〈pe + pi〉 k‖

〈
u‖ cos θ

〉
= −

ωB

2

∂

∂x
〈φ+ pi〉



detailed example – parallel forces

• electrons: start with

∂

∂t

(
A‖ + µeJ‖

)
+ [φ, µeJ‖] = ∇‖ (pe − φ)− 0.51µeνeJ‖

• flux variable sideband component: multiply by cos θ and then take fsavg

◦ note ∂/∂t on sideband piece is neglected by the ordering
◦ integrate ∂/∂θ in ∇‖ by parts under fsavg
◦ for these purposes neglect nonlinear terms

k‖ 〈(pe − φ) sin θ〉 = 0.51µeνe
〈
J‖ cos θ

〉

• with temperature dynamics there is more to it than this but the ideas remain



detailed example – parallel forces

• ions: start with

µi

∂

∂t
u‖ + [φ, µiu‖] = −∇‖ (pe + pi) + µ‖∇

2
‖

(
u‖ + kqi‖

)

• flux variable sideband component: multiply by cos θ and then take fsavg

◦ note ∂/∂t on sideband piece is neglected by the ordering
◦ integrate ∂/∂θ in ∇‖ by parts under fsavg
◦ for these purposes neglect nonlinear terms

k‖ 〈(pe + pi) sin θ〉 = −µ‖k
2
‖

〈(
u‖ + kqi‖

)
cos θ

〉

• here we’ve kept enough of the temperature dynamics to get rotation effects
◦ because these parallel flux variables are considered in divergence balance

k‖
〈
u‖ cos θ

〉
= −

ωB

2

∂

∂x
〈φ+ pi〉 k‖

〈
qi‖ cos θ

〉
= −

5

2

ωB

2

∂

∂x
〈Ti〉



rotation – zonal charge balance

• start with (warm-ion) vorticity equation, keep polarisation, neglect nonlinearities

∂

∂t
ρ2s∇

2
⊥ (φ+ pi) = B∇‖

J‖
B

−K (pe + pi)

• zonal component

∂

∂t
ρ2s

∂2

∂x2
〈φ+ pi〉 = −ωB

∂

∂x
〈(pe + pi) sin θ〉

plug in from last page, evaluate coefficients

∂

∂t
ρ2s

∂2

∂x2
〈φ+ pi〉 = −

µ‖ωB
2

2

∂2

∂x2

〈(
φ+ pi +

5

2
kTi

)〉

• this says φ-profile relaxes into neoclassical balance with rate µ‖ωB
2/2

◦ nonzero fluid rotation given by kTi piece, same (relation, damping model) as in

P Helander and DJ Sigmar, Collisional Transport in Magnetized Plasmas (2002)



MHD and flow equilibration processes

• the way we did it for flow energetics, i.e., don’t order ∂/∂t
◦ allow it to cover from vA/qR to cs/R to nui to transport

• displayed: isothermal version for clarity, except keeping kqi‖ in viscosity
◦ in the computations carry the entire system (12 gyrofluid equations)

• acoustic branch: zonal vorticity ̟, sidebands for ne and u‖

• MHD branch: zonal ne, sidebands for J‖ and ̟

• main point: these branches are coupled only by two-fluid processes
◦ adiabatic compression among sidebands for ne and J‖ and φ
◦ diamagnetic compression between zonal and sideband ne
◦ in the thermal version, especially important for Ti
◦ why? because Ti is not constrained by Alfvén dynamics

• these processes strongly alter zonal flow relaxation
◦ they are absent in the “resistive ballooning” and “2D interchange” models

• details: New J Phys 7 (2005) 92



Sideband Dynamics for Warm-Ion Flows

• zonal vorticity, pressure sideband, sound wave sideband

∂

∂t
〈̟〉 = −ωB

∂

∂x
〈(pe + pi) sin θ〉

∂

∂t
〈ne sin θ〉 =

ωB

2

∂

∂x
〈φ− pe〉+ k‖

〈
u‖ cos θ

〉
− k‖

〈
J‖ cos θ

〉

∂

∂t
µi

〈
u‖ cos θ

〉
= −k‖ 〈(pe + pi) sin θ〉 − µ‖k

2
‖

〈(
u‖ + kqi‖

)
cos θ

〉

• Alfvén sideband, flow sideband, zonal pressure

∂

∂t

(〈
A‖ cos θ

〉
+ µe

〈
J‖ cos θ

〉)
= k‖ 〈pe sin θ〉 − k‖ 〈φ sin θ〉 − 0.51µeνe

〈
J‖ cos θ

〉

∂

∂t
〈̟ sin θ〉 = −k‖

〈
J‖ cos θ

〉
−
ωB

2

∂

∂x
〈pe + pi〉

∂

∂t
〈ne〉 = ωB

∂

∂x
〈φ sin θ〉 − ωB

∂

∂x
〈pe sin θ〉



flow equilibration in the fluid model

• logarithmic time axis, shows all successive phases

• rotation balances (cs/R), relaxes (νi), then decays with transport
◦ radial electric field (AP is axis value of φ), poloidal flow (Eu is energy in u‖)



relaxation in a gyrokinetic model

• large-scale “shear-Alfvén gyrokinetics” with fields φ,A‖ and no gyroaveraging
◦ axisymmetric geometry and dynamics – a 4D (2X×2V) model

Contrib Plasma Phys 50 (2010) 228 and Phys Plasmas 17 (2010) 112302

• for each species (ions, electrons, Z = ±1)

B∗
‖

∂f

∂t
+∇H ·

c

Ze
b×∇f +

(
B+ pz

c

Ze
∇×b

)
·

(
∂H

∂pz
∇f −

∂f

∂pz
∇H

)
= C(f)

• self-consistent fields

∑

sp

∫
dW

[
Zef +

1

B∗
‖

∇ ·B∗
‖

fmc2

B2
∇⊥φ

]
= 0

∇2
⊥A‖ +

4π

c

∑

sp

∫
dW

[
Ze

m

(
pz −

Ze

c
A‖

)
f

]
= 0



what Lagrangian did we get this from

• gyrocenter Lagrangian and Hamiltonian in coordinates {R, pz, µ}

Lp =

(
Ze

c
A+ pzb

)
· Ṙ+

mc

Ze
µϑ̇−H

H =
1

2m

(
pz −

Ze

c
A‖

)2

+ µB + Zeφ−
mc2

2B2
|∇⊥φ|

2

• full system Lagrangian as a field theoretical model

L =

∫
dV L L =

∑

sp

∫
dW f Lp −

1

8πR2

∣∣∇⊥

(
ψ +A‖R

)∣∣2

• integration over space, dV , and over velocity space, dW
◦ in this case b = R∇ϕ and B∗

‖ = B

• vary coordinates (eqn for f), and field variables (eqs for φ,A‖)



bootstrap current equilibration (collisions)
FEFI 4D, Edge Base Case, nominal νea/cs = 1.88



bootstrap current equilibration (rho-star)
FEFI 4D, Edge Base Case, nominal ρs/a = 1.83× 10−3



bootstrap current equilibration (rho-star)
FEFI 4D, Edge Base Case, more ITER-relevant, to ρs/a = 6× 10−4



squeezed orbit regime in ITER

• KC Shaing’s squeezed-orbit regime requires L⊥ < ρB

KC Shaing and RD Hazeltine, Phys Fluids B 4 (1992) 2547

• orbit squeezed by ∂2φ/∂x2 defined by width of constant-H curve in RZ-plane
◦ orbit is a 4D curve with 3 coordinates fixed (ǫ, µ, ψc)

• in equilibrium state, scale of φ tied to L⊥

◦ but L⊥ is limited by MHD stability (given fixed qR/a etc.)

• by definition, ρs/L⊥
<
∼ a/qR should then be enough → neoclassical transport

◦ previous slides: only very small δ <
∼ 10−3 reached relaxed neoclassical state

• this was my experience running these cases: for a squeezed-regime start, transport
reduced gradients before the finite νi could establish a steady neoclassical state

• it is hard to envisage this regime in the face of transport simultaneously occurring

• nevertheless definitive results not yet in, and it remains an interesting topic



pedestal width – models

• EPED: PB Snyder et al, Phys Plasmas 16 (2009) 056118
◦ simple version sets gradient to MHD boundary and width via KBM stability
◦ KBM (kinetic ballooning) is a core mode which limits the pedestal top
◦ EPED represents current data sets very well
◦ let’s say it works for JET-size and smaller, at least

• alternative: use experience that local fluxtube models do not show H-mode transport
◦ local requirement: small ρs/L⊥

◦ hence conjecture that L⊥/ρs has to be below some limit in the pedestal

◦ evaluate parameters at pedestal halfway point, with L⊥ = |∇ log Te|
−1

• the values for AUG #17151 are L⊥ = 3 cm and T = 360 eV and B = 2T
◦ this gives L⊥ = 24ρs (if you want sharper L⊥ then it’s even fewer ρs)

• suppose we say L⊥ must be below 32ρs to achieve H-mode
◦ result: optimistic for AUG, approximate for JET, but very pessimistic for ITER

• suppose we (EPED or other) say in ITER you’ll have > 64ρs
◦ then: local conditions are felt by the turbulence within the pedestal
◦ then: → no H-mode



local models don’t make H mode

• all the above physics is present
◦ it is a 3D model in tokamak geometry, correct boundary conditions
(global consistency, periodicity constraints, no radial periodicity or ballooning)

◦ 12-moment (e, i) electromagnetic gyrofluid model
◦ two species (e, i) electromagnetic gyrokinetic model
◦ flow effects included (both zonal flow and equilibrium flow, neoclassics)

• always find smooth monotonic rise of flux with parameters, e.g., . . .
◦ gradient of β
◦ collisionality
◦ rho-star (ρs/L⊥) ↔ system size



Edge Core Transition Power Ramp

• model: GEM, 8 flux tubes, spaced at normalised volume radius values

ra = { 0.55 0.61 0.67 0.73 0.79 0.85 0.91 0.97 }

• T and ∇T for Te = Ti adjusted to get flux times sfc ≈ given input power
◦ it is an optimisation scheme, not a transport model

• GEM is formulated for all parameters, but lacks trapped electrons
◦ physics is found to stay in EM/NL ITG plus MHD regime anyway

• model is AUG-sized, profiles for q, ne, and T given with LCFS values fixed

• time traces and profiles at several times
◦ sweep: P = 1MW ramped after t = 1000τGB to 20MW at t = 20× 103

• GEM: B Scott Phys Plasmas 12 (2005) 102307 and PPCF 48 (2006) B277



power sweep to 20 MW



power sweep to 20 MW



KBM

Two Regimes of Edge Pedestal Width Limitation

p

∆

DALF

MHD

limited by MHD and KBM    (EPED)

p

∆

MHD

limited by DWT   (−−> local limit/ftubes)

L−mode DALF
H−mode

KBM

it is possible that new nonlinear physics
enters to additionally limit the ITER pedestal



Edge/Pedestal – several physical processes
• we didn’t cover them all, just the basics present in any reasonable model
◦ energetic coupling between ExB and thermal energy defines the dynamics
◦ not only turbulence, but also ELMs (which saturate on turbulence they generate)
◦ not only that but also flow energetics, coupling to resistivity through currents
◦ not only that but also equilibrium relaxation which involves diamagnetic compres-
sion

• gyrokinetic study of neoclassical flows is very relevant
◦ remember: neoclassical process, not “neoclassical theory”

• several external processes which may turn out to be decisive
◦ coupling across the LCFS (separatrix) to the SOL
◦ sources, e.g., penetration of neutrals into the edge
◦ turbulence/MHD energy avalanching down from the core

• despite PR claims, no reasonable L-H transition model exists (process not known)

lots of opportunity for new people to make a mark
think outside the box, stay grounded but independent

you don’t have to follow self-styled gurus


